Chat¶
Looking for example notebooks?
For example notebooks, check out examples/ai/chat
on our
GitHub.
The chat UI element provides an interactive chatbot interface for conversations. It can be customized with different models, including built-in AI models from popular providers or custom functions.
- class marimo.ui.chat(model: Callable[[List[ChatMessage], ChatModelConfig], object], *, prompts: List[str] | None = None, on_message: Callable[[List[ChatMessage]], None] | None = None, show_configuration_controls: bool = False, config: ChatModelConfigDict | None = None, allow_attachments: bool | List[str] = False, max_height: int | None = None)¶
A chatbot UI element for interactive conversations.
Example: Using a custom model.
Define a chatbot by implementing a function that takes a list of
ChatMessage
s and optionally a config object as input, and returns the chat response. The response can be any object, including text, plots, or marimo UI elements.def my_rag_model(messages, config): # Each message has a `content` attribute, as well as a `role` # attribute ("user", "system", "assistant"); question = messages[-1].content docs = find_docs(question) prompt = template(question, docs, messages) response = query(prompt) if is_dataset(response): return dataset_to_chart(response) return response chat = mo.ui.chat(my_rag_model)
Async functions and async generators are also supported, meaning these are both valid chat functions:
async def my_rag_model(messages): return await my_async_function(messages)
async def my_rag_model(messages): for response in my_async_iterator(messages): yield response
The last value yielded by the async generator is treated as the model response. ui.chat does not yet support streaming responses to the frontend. Please file a GitHub issue if this is important to you: https://github.com/marimo-team/marimo/issues
Example: Using a built-in model.
Instead of defining a chatbot function, you can use a built-in model from the
mo.ai.llm
module.chat = mo.ui.chat( mo.ai.llm.openai( "gpt-4o", system_message="You are a helpful assistant.", ), )
You can also allow the user to include attachments in their messages.
chat = mo.ui.chat( mo.ai.llm.openai( "gpt-4o", ), allow_attachments=["image/png", "image/jpeg"], )
Attributes.
value
: the current chat history, a list ofChatMessage
objects.
Initialization Args.
model
:(Callable[[List[ChatMessage], ChatModelConfig], object])
a callable that takes in the chat history and returns a responseprompts
: optional list of initial prompts to present to the useron_message
: optional callback function to handle new messagesshow_configuration_controls
: whether to show the configuration controlsconfig
: optionalChatModelConfigDict
to override the default configuration. Keys include:max_tokens
temperature
top_p
top_k
frequency_penalty
presence_penalty
allow_attachments
: (bool | List[str]) allow attachments. True for any attachments types, or pass a list of mime typesmax_height
: optional maximum height for the chat element
Public methods
Inherited from
UIElement
form
([label, bordered, loading, ...])Create a submittable form out of this
UIElement
.send_message
(message, buffers)Send a message to the element rendered on the frontend from the backend.
Inherited from
Html
batch
(**elements)Convert an HTML object with templated text into a UI element.
center
()Center an item.
right
()Right-justify.
left
()Left-justify.
callout
([kind])Create a callout containing this HTML element.
style
([style])Wrap an object in a styled container.
Public Data Attributes:
Inherited from
UIElement
value
The element’s current value.
Inherited from
Html
text
A string of HTML representing this element.
Basic Usage¶
Here’s a simple example using a custom echo model:
import marimo as mo
def echo_model(messages, config):
return f"Echo: {messages[-1].content}"
chat = mo.ui.chat(echo_model, prompts=["Hello", "How are you?"])
chat
Here, messages
is a list of ChatMessage
objects,
which has role
("user"
, "assistant"
, or "system"
) and content
(the
message string) attributes; config
is a
ChatModelConfig
object with various
configuration parameters, which you are free to ignore.
Using a Built-in AI Model¶
You can use marimo’s built-in AI models, such as OpenAI’s GPT:
import marimo as mo
chat = mo.ui.chat(
mo.ai.llm.openai(
"gpt-4",
system_message="You are a helpful assistant.",
),
show_configuration_controls=True
)
chat
Accessing Chat History¶
You can access the chat history using the value
attribute:
chat.value
This returns a list of ChatMessage
objects, each
containing role
, content
, and optional attachments
attributes.
Custom Model with Additional Context¶
Here’s an example of a custom model that uses additional context:
import marimo as mo
def rag_model(messages, config):
question = messages[-1].content
docs = find_relevant_docs(question)
context = "\n".join(docs)
prompt = f"Context: {context}\n\nQuestion: {question}\n\nAnswer:"
response = query_llm(prompt, config)
return response
mo.ui.chat(rag_model)
This example demonstrates how you can implement a Retrieval-Augmented Generation (RAG) model within the chat interface.
Templated Prompts¶
You can pass sample prompts to mo.ui.chat
to allow users to select from a
list of predefined prompts. By including a {{var}}
in the prompt, you can
dynamically insert values into the prompt; a form will be generated to allow
users to fill in the variables.
mo.ui.chat(
mo.ai.llm.openai("gpt-4o"),
prompts=[
"What is the capital of France?",
"What is the capital of Germany?",
"What is the capital of {{country}}?",
],
)
Including Attachments¶
You can allow users to upload attachments to their messages by passing an
allow_attachments
parameter to mo.ui.chat
.
mo.ui.chat(
rag_model,
allow_attachments=["image/png", "image/jpeg"],
# or True for any attachment type
# allow_attachments=True,
)
Built-in Models¶
marimo provides several built-in AI models that you can use with the chat UI element.
OpenAI¶
import marimo as mo
mo.ui.chat(
mo.ai.llm.openai(
"gpt-4o",
system_message="You are a helpful assistant.",
api_key="sk-proj-...",
),
show_configuration_controls=True
)
- class marimo.ai.llm.openai(model: str, *, system_message: str = 'You are a helpful assistant specializing in data science.', api_key: str | None = None, base_url: str | None = None)¶
OpenAI ChatModel
Args:
model: The model to use. Can be found on the OpenAI models page
system_message: The system message to use
api_key: The API key to use. If not provided, the API key will be retrieved from the OPENAI_API_KEY environment variable or the user’s config.
base_url: The base URL to use
Anthropic¶
import marimo as mo
mo.ui.chat(
mo.ai.llm.anthropic(
"claude-3-5-sonnet-20240620",
system_message="You are a helpful assistant.",
api_key="sk-ant-...",
),
show_configuration_controls=True
)
- class marimo.ai.llm.anthropic(model: str, *, system_message: str = 'You are a helpful assistant specializing in data science.', api_key: str | None = None, base_url: str | None = None)¶
Anthropic ChatModel
Args:
model: The model to use. Can be found on the Anthropic models page
system_message: The system message to use
api_key: The API key to use. If not provided, the API key will be retrieved from the ANTHROPIC_API_KEY environment variable or the user’s config.
base_url: The base URL to use
Google AI¶
import marimo as mo
mo.ui.chat(
mo.ai.llm.google(
"gemini-1.5-pro-latest",
system_message="You are a helpful assistant.",
api_key="AI..",
),
show_configuration_controls=True
)
- class marimo.ai.llm.google(model: str, *, system_message: str = 'You are a helpful assistant specializing in data science.', api_key: str | None = None)¶
Google AI ChatModel
Args:
model: The model to use. Can be found on the Gemini models page
system_message: The system message to use
api_key: The API key to use. If not provided, the API key will be retrieved from the GOOGLE_AI_API_KEY environment variable or the user’s config.
Groq¶
import marimo as mo
mo.ui.chat(
mo.ai.llm.groq(
"llama-3.1-70b-versatile",
system_message="You are a helpful assistant.",
api_key="gsk-...",
),
show_configuration_controls=True
)
- class marimo.ai.llm.groq(model: str, *, system_message: str = 'You are a helpful assistant specializing in data science.', api_key: str | None = None, base_url: str | None = None)¶
Groq ChatModel
Args:
model: The model to use. Can be found on the Groq models page
system_message: The system message to use
api_key: The API key to use. If not provided, the API key will be retrieved from the GROQ_API_KEY environment variable or the user’s config.
base_url: The base URL to use
Types¶
Chatbots can be implemented with a function that receives a list of
ChatMessage
objects and a
ChatModelConfig
.
- class marimo.ai.ChatMessage(role: Literal['user', 'assistant', 'system'], content: object, attachments: List[ChatAttachment] | None = None)¶
A message in a chat.
- class marimo.ai.ChatModelConfig(max_tokens: 'Optional[int]' = None, temperature: 'Optional[float]' = None, top_p: 'Optional[float]' = None, top_k: 'Optional[int]' = None, frequency_penalty: 'Optional[float]' = None, presence_penalty: 'Optional[float]' = None)¶
mo.ui.chat
can be instantiated with an initial
configuration with a dictionary conforming to the config.
ChatMessage
s can also include attachments.
- class marimo.ai.ChatAttachment(url: 'str', name: 'str' = 'attachment', content_type: 'Optional[str]' = None)¶